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Ignoring Uncertainties

PILOT4 from NETLIB library
I Constraint 372

I Optimal “classical” solution

I Can the coefficients be known with
such a high accuracy?

I Assume 0.1%-accurate approximation
I Worst violation: 450%

I Random perturbation: (1 + ξj)aj

I Relative violation:

V = b−ãT x∗

b
× 100%

I Prob{V > 0} = 0.5

I Prob{V > 150%} = 0.18

I Mean(V ) = 125%

I Robust optimization: robust solutions remain (almost) always feasible

I Usually still very good objective value
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Robust Optimization

Definition (Robust Optimization with interval cost uncertainties)
Given a set of feasible solution X ⊆ {0, 1}n. Let U be an interval uncertainty set
defining different costs c ∈ [c, c]n. A robust optimial solution x∗ ∈ X is a feasible
solution minimizing the worst case costs, i.e., solve

min
x∈X

{
max
c∈U

n∑
i=1

cixi

}

Shortest Path Problem
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Robust Optimization under Budget Uncertainties

Definition (Robust Binary Problem with budget uncertainties)
Given a set of feasible solution X ⊆ {0, 1}n, costs c : N → R and deviations
ĉ : N → R and a parameter Γ ∈ N. An optimal solution solves

min
x∈X

{
max

S⊆N,|S|≤Γ

∑
i∈S

ĉixi +

n∑
i=1
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Budget Uncertainties

Theorem (Bertsimas & Sim 2004)
Given a set of feasible solution X = {x ∈ {0, 1}n | Ax ≥ b}, costs c : N → R and
deviations ĉ : N → R and a parameter Γ ∈ N. Both problems are equivalent

min max
S⊆N,|S|≤Γ

∑
i∈S

ĉixi +
∑
i∈N

cixi

s.t. Ax ≥ b

x ∈ {0, 1}n

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N

p ∈ Rn
≥0, z ≥ 0, x ∈ {0, 1}n

Proof: max
∑

ĉixiyi∑
i∈N

yi ≤ Γ

y ∈ {0, 1}n

I Totally unimodular
I Dualize
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ĉixi +
∑
i∈N

cixi

s.t. Ax ≥ b

x ∈ {0, 1}n

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N
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ĉixi +
∑
i∈N

cixi

s.t. Ax ≥ b

x ∈ {0, 1}n

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N
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ĉixi +
∑
i∈N

cixi

s.t. Ax ≥ b

x ∈ {0, 1}n

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N
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Γ + 1 largest value ĉixi

I We pay the Γ largest
values ĉixi

i

ĉixi

1 2 3 4 5 6 7

Γ = 3

z

}pi = (ĉixi − z)+

z

z
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Practical Performance

I compact formulation,
no use of big M

I let’s solve some
problems!

I robust knapsack:

50 items can already
be intractable

Nodes Cuts/
Node Left Objective IInf Best Integer Best Bound ItCnt Gap

23720047 15197259 11719,6862 20 11606,0000 12288,1353 55057467 5,88%
23770901 15226459 11828,1686 23 11606,0000 12287,7700 55180967 5,87%
23821565 15255529 12011,4041 24 11606,0000 12287,4030 55303331 5,87%
23871269 15283781 11783,7154 22 11606,0000 12287,0473 55424214 5,87%

Elapsed time = 3434,41 sec. 5979817,73 ticks, tree = 3353,00 MB, solutions = 12
Nodefile size = 1305,88 MB 727,49 MB after compression
23922166 15312936 12191,2914 28 11606,0000 12286,6809 55547450 5,86%
23972875 15342043 12200,0047 28 11606,0000 12286,3216 55668913 5,86%
24023053 15370543 11736,4889 21 11606,0000 12285,9418 55790174 5,86%
24073375 15399019 12100,5997 25 11606,0000 12285,5821 55912495 5,86%
24124016 15427933 12185,6295 27 11606,0000 12285,2237 56034120 5,85%
24174475 15456520 12076,8979 25 11606,0000 12284,8592 56156283 5,85%
24223910 15484613 11936,4399 23 11606,0000 12284,4984 56276599 5,85%
24273972 15512958 11751,6692 24 11606,0000 12284,1408 56398552 5,84%
24324148 15541333 11929,2290 23 11606,0000 12283,7841 56521083 5,84%
24374451 15569768 12255,0014 27 11606,0000 12283,4225 56644319 5,84%

Elapsed time = 3528,01 sec. 6132528,45 ticks, tree = 3408,61 MB, solutions = 12
Nodefile size = 1360,88 MB 755,91 MB after compression
24424125 15598043 11993,2112 23 11606,0000 12283,0698 56764602 5,83%
24475158 15626928 12240,6841 27 11606,0000 12282,7013 56887548 5,83%
24526113 15655874 12232,6254 27 11606,0000 12282,3386 57011130 5,83%
24576245 15684253 12236,5555 30 11606,0000 12281,9808 57133348 5,82%
24625778 15712276 cutoff 11606,0000 12281,6332 57253146 5,82%
24676376 15740977 11992,7508 26 11606,0000 12281,2759 57374978 5,82%
24726652 15769305 12240,2652 28 11606,0000 12280,9179 57496901 5,82%
24777038 15797704 11615,6468 22 11606,0000 12280,5627 57618421 5,81%
24827584 15826342 12045,1031 24 11606,0000 12280,2089 57740201 5,81%
24877740 15854780 cutoff 11606,0000 12279,8571 57860645 5,81%

Elapsed time = 3623,59 sec. 6285119,25 ticks, tree = 3464,00 MB, solutions = 12
Nodefile size = 1416,87 MB 784,63 MB after compression
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Classical Solution Approaches

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N

p ∈ Rn
≥0, z ≥ 0, x ∈ {0, 1}n

Strong Formulations
I Atamtürk:

four strong versions

Discretize z

I Bertsimas & Sim:
n+ 1-subproblems

I Hansknecht et. al:
Divide and Conquer

C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 8



Classical Solution Approaches

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N
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A Bilinear Formulation

I Atamtürk Formulations: If the nominal formulation is α-tight then the strongest
formulation is also α-tight for the robust problem [At2006]

I Relatively small z are sufficient to fulfill pi + z ≥ ĉixi for fractional xi
I Remedy: multiply z with xi to strengthen the constraint:

min
∑
i∈N

cixi + Γz +
∑
i∈N

pi

s.t. Ax ≥ b

pi + xiz ≥ ĉixi ∀i ∈ N

x ∈ {0, 1}n , p ∈ Rn
≥0, z ≥ 0

I Bilinear constraint is equivalent to
{
pi ≥ 0 for xi = 0

pi + z ≥ ĉixi for xi = 1

Theorem
The above bilinear formulation is stronger than any polyhedral formulation.

I The bilinear formulation is impractical but the starting point for two new
approaches
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Sequence of Nominal Problems

I For fixed z = z′ it holds
pi = (ĉixi − z′)+ = (ĉi − z′)+xi

I Fixing z yields a nominal problem
I Fix z ∈ Z and solve |Z| nominal

problems [BS2003]
I |Z| reducible to dn−Γ

2 e+ 1 [LK2014]
I Prune z on the fly using relations

between objective values [HRS2018]

min Γz +
∑
i∈N

pi +
∑
i∈N

cixi

s.t. Ax ≥ b

z + pi ≥ ĉixi ∀i ∈ N

p ∈ Rn
≥0, z = z′, x ∈ {0, 1}n

I The Γ largest value ĉixi is an optimal
choice for z

I Z = {0, ĉ1, . . . , ĉn} contains an
optimal choice for z

i

ĉixi

1 2 3 4 5 6 7

Γ = 3

z
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ĉixi

1 2 3 4 5 6 7

Γ = 3

z

C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 10



Using Bounds on z

I an optimal z ∈ {0, ĉ1, . . . , ĉn} exists

I fixing z yields nominal problem

⇒ solve n+ 1 nominal problems [BS2003]

I n+ 1 may be too large for brute enumeration

⇒ bound z instead of fixing it

I consider feasible values of
pi, z for fixed xi ∈ (0, 1)

pi

z
0

ĉixi

ĉixi ĉi
z z

I original constraint pi ≥ ĉixi − z

I bilinear constraint pi ≥ ĉixi − xiz

I assume we are given bounds z ≤ z ≤ z

I we linearize the bilinear constraint to

pi ≥ (ĉi − z)xi + z − z (1)

and
pi ≥ (ĉi − z)xi (2)

Proposition
Inequalities (1) and (2) approximate the bilinear one and are equally strong if
z ∈ {z, z}.
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pi ≥ (ĉi − z)xi + z − z (1)

and
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pi ≥ (ĉi − z)xi + z − z (1)

and
pi ≥ (ĉi − z)xi (2)

Proposition
Inequalities (1) and (2) approximate the bilinear one and are equally strong if
z ∈ {z, z}.

C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty 11



Using Bounds on z

I an optimal z ∈ {0, ĉ1, . . . , ĉn} exists
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Branch & Bound

I let Z = {z1, . . . , zk} contain an
optimal value for z

I idea: branch on Z to find promising
values for z

I solve LP-relaxation
I branch and restrict z to new domains
I apply stronger linearization using new

bounds z, z

I solve integer subproblem once bilinear
formulation is sufficiently
approximated

{z1,...,zk}
z∈[z1,zk]

{z1,...,z3}
z∈[z1,z3]

{z4,...,zk}
z∈[z4,zk]

z ≤ z3 z ≥ z4pi ≥ (ĉi − z3)xi pi + z ≥ (ĉi − z4)xi + z4

{z6,zk}
z∈[z6,zk]

pi ≥ (ĉi − z5)xi pi + z ≥ (ĉi − z6)xi + z6

{z4,z5}
z∈[z4,z5]
{z4,z5}
z∈[z4,z5]

I advantages:
I stronger LP-relaxations in subproblems

I fast pruning of non-optimal z
I bounds on z yield many more structural properties
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{z6,zk}
z∈[z6,zk]
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Computational Study

I Implemented algorithm in Java with Gurobi for solving subproblems

I Additional methods

I Optimality-cuts, clique reformulations, bound estimation
I Pruning, terminating nominal subproblems, node selection, branching point etc...

I Tested algorithm for robustified instances of MIPLIB 2017
I 67 suitable basic instances remained after filtering
I Several instances of different uncertainty levels per basic instance

I “State-of-the-art” algorithms for comparison

I Bertsimas Sim standard reformulation, |Z| nominal subproblems, Divide & Conquer
[HRS2018], Atamtürk’s formulations,
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Computational Results: B&B vs. Literature

Branch & Bound Reformulation n+ 1 Subproblems Divide & Conquer
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Improving Algorithms from Literature

I Theoretical results improve competing algorithms substantially

I E.g. cliques for ROB, optimality-cuts and improved dual bounds for DnC
Branch & Bound Reformulation Reformulation + Divide & Conquer Divide & Conquer +
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Recycling Valid Inequalities

I let CNOM, CROB be the convex hulls of the nominal and robust problems

I we call an inequality
∑

i∈N πixi ≤ π0 recyclable if it is valid for CNOM and π ≥ 0

Theorem
Let

∑
i∈N πixi ≤ π0 be a recyclable inequality. Then the recycled inequality∑

i∈N
πipi + zπ0 ≥

∑
i∈N

πiĉixi

is valid for CROB.
Proof: sum all bilinear constraints with coefficients π (valid due to π ≥ 0)∑

i∈N
πi(pi + xiz) ≥

∑
i∈N

πiĉixi

⇔
∑
i∈N

πipi + z
∑
i∈N

πixi ≥
∑
i∈N

πiĉixi
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πiĉixi

is valid for CROB.
Proof: sum all bilinear constraints with coefficients π (valid due to π ≥ 0)∑

i∈N
πi(pi + xiz) ≥

∑
i∈N

πiĉixi
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Facet-Defining Recycled Inequalities

I recycled inequalities are often facet-defining for CROB

I for simplicity: assume ĉi > 0 for all i ∈ N

Theorem
Let

∑
i∈N πixi ≤ π0 be a recyclable inequality.

Let S = {i ∈ N |πi > 0} be its support
and F =

{
x ∈ CNOM

∣∣∑
i∈N πixi = π0

}
be its nominal face.

The corresponding recycled inequality is facet-defining for CROB if and only if
dim (projS (F )) = |S| − 1.

x1 + x2 ≤ 1
x1

x2

x3

project
x1

x2

p1 + p2 + z ≥ ĉ1x1 + ĉ2x2
is facet-defining
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Facet-Defining Recycled Inequalities

Corollary
Assume that CNOM is full-dimensional. If

∑
i∈N πixi ≤ π0 is recyclable and

facet-defining for CNOM, then its recycled inequality is facet-defining for CROB.

I corollary can be generalized to problems with lower dimension

Observation
Dominated inequalities can also yield facet-defining recycled inequalities.

Robust Knapsack

capacity

I let
∑
i∈C

xi ≤ |C| − 1 be a minimal cover

inequality
I in general not facet-defining for knapsack
I but

∑
i∈C

pi + (|C| − 1)z ≥
∑
i∈C

ĉixi is always

facet-defining for robust knapsack
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Computational Study: Bipartite Matching

I standard formulation + recycle constraints
∑

e∈δ(v) xe ≤ 1 for all nodes v

I 10 random instances each for different numbers of nodes n ∈ {50, 100, 150}
I closing integrality gap by ∼ 99% for 150 nodes
I ∼ 504-times faster for 100 nodes and ∼ 15-times faster for 150 nodes
I ∼ 22-times smaller primal-dual integral for 100 nodes and ∼ 4-times smaller for

150 nodes

robust standard formulation recycle constraints

nodes timeout time P-D int. gap timeout time P-D int. gapintegral integral
50 0 1.73 0.04 19.53% 0 0.48 0.04 0.33%
100 9 2269.14 3.49 22.82% 0 4.50 0.16 0.32%
150 7 2223.68 2.56 23.66% 0 150.40 0.59 0.27%
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Computational Study

Branch & Bound Recycling Reformulation Divide & Conquer
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Conclusion

Summary
I B&B for robust optimization based on strong

bilinear formulation
I recycle inequalities
I conducted extensive computational study
I B&B has significantly better performance

compared to literature
I insights useful for improving existing

approaches

Future Work
I evaluate for uncertain constraints
I generalizable to other robustness concepts(?)

Thank you for your attention!
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