

Solving Robust Binary Optimization Problem with Budget Uncertainty

Christina Büsing, Timo Gersing, Arie Koster

Mixed Integer Programming Workshop, 2025

C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

1

Mixed Integer Program

$$\min c^{\top} x$$
$$Ax \ge b$$
$$x \in \{0, 1\}$$

C. Büsing

Mixed Integer Program

$$\min \frac{c^{\top} x}{Ax \ge b}$$
$$x \in \{0, 1\}$$

C. Büsing

Mixed Integer Program

$$\min c^{\top} x$$
$$Ax \ge b$$
$$x \in \{0, 1\}$$

Historical Data/Measurements

506160 16AUG2011:311-5M/ICD	SM-2KAMME24AUG2012:124AUG2012:1	1,5824E+12 11 11.51	5 Im Kalender 16AUG2011:116AUG201
511769 17AUG2011:111-UNTERS	WDH 16AUG2012:(16AUG2012:)	2,325E+11 I1 I1EO	HO 5 Im Kalender 17AUG2011:117AUG201
564409 30AUG2011:311-SM/ICD	SM-1KAMME28AUG2012:128AUG2012:1	3,7552E+12 I1 I1L51	5 Im Kalender 30AUG2011:130AUG201
569745 31AUG2011:311-5M/ICD	SM-1KAMME29AUG2012:129AUG2012:1	7,2358E+12 11 11L51	5 Im Kalender 31AUG2011:331AUG201
569745 31AUG2011:111-SM/ICD	SM-1KAMME29AUG2012:129AUG2012:1	7,2358E+12 I1 I1LST	5 Im Kalender 31AUG2011:131AUG201
569745 31AUG2011:311-SM/ICD	SM-1KAMME29AUG2012:129AUG2012:1	7,2358E+12 I1 I1L51	5 Im Kalender 31AUG2011:131AUG201
644371 205EP2011:1 11-UNTERS	WDH 175EP2012:0 175EP2012:0	3,423E+12 I1 IM10	5 Stornierung: 195EP2011:0 205EP201
644372 20SEP2011:1'11-UNTERS	GKP+BGA+DI17SEP2012:0 17SEP2012:0	3,423E+12 I1 IM19	5 Stornierungs 195EP2011:0: 205EP201
648823 295EP2011:1/11-SM/ICD	SM-2KAMME 26SEP2012:1 26SEP2012:1/	2,5708E+12 I1 I1L51	5 Im Kalender 195EP2011:1/ 295EP201
711316 04OCT2011:111-5M/ICD	SM-2KAMME25SEP2012:1 255EP2012:1	6,3114E+11 11 11L51	5 Im Kalender 040CT2011:1040CT201
743860 11OCT2011:111-SM/ICD	SM-2KAMME06SEP2012:1-06SEP2012:1-	3,9465E+12 I1 I1LST	5 Im Kalender 110CT2011:1 110CT201
760872 14OCT2011:111-SM/ICD	SM-1KAMME11JUL2012:1411JUL2012:14	2,9754E+11 I1 I1LST	5 Im Kalender 140CT2011:1140CT201
533627 12DEC2011-0 I1-5M/ICD	ICD-BIVENT 10AUG2012:110AUG2012:1	1,4495E+10 11 11L51	5 Stornierung: 23AUG2011:112DEC201
034844 16DEC2011:1 I1-SM/ICD	ICD-2KAMMI15JUN2012:1 15JUN2012:1	1,264E+12 I1 I1LST	5 Im Kalender 16DEC2011:1 16DEC201
845266 03NOV2011: 11-SM/ICD	SM-2KAMME 27JUL2012:0E 27JUL2012:0E	1,2934E+12 11 11L51	5 Im Kalender 03NOV2011: 03NOV20
817375 27OCT2011:1MED1	HOLTERITAG 16JUL2012:11 16JUL2012:11	3,5175E+12 I1 I1PO	10 Im Kalender 270CT2011:1270CT201
817375 270CT2011:1 MED1	HOLTER3TAG16JUL2012:1(16JUL2012:1(3,5175E+12 I1 I1PO	10 Status über (270CT2011:1270CT201
147160 06FEB2012:1 11-SM/ICD	ICD-1KAMMI13JUL2012:1(13JUL2012:1(5,6679E+12 I1 I1EO	HO 5 Res. ROM/11 13/AN2012:1 06FEB201
112889 06JAN2012:1 I1-ECHOKA	R TTE 23MAY2012:(23MAY2012:)	3,9622+11 11 11EC	HO 10 Im Kalender 06JAN2012:1 06JAN201
112889 06JAN2012:1 I1-ECHOKA	RITTE 23MAY2012:(23MAY2012:)	3,962E+11 I1 I1EC	HO 10 Status über (06JAN2012:1 06JAN201
254641 06FEB2012:101-SM/ICD	ICD-2KAMMI02AUG2012:(02AUG2012:(3,0771E+12 I1 I1L51	5 Im Kalender 06FEB2012:1/06FEB201
254641 06/EB2012:1 11-5M/ICD	ICD-2KAMM(02AUG2012:(02AUG2012:(3,0771E+12 11 11L51	5 Stornierung: 06FEB2012:1/06FEB201

Constraint 372

$$\begin{split} a^Tx &\equiv -15.79081x_{826} - 8.598819x_{827} - 1.88789x_{828} - 1.362417x_{829} \\ &\quad -1.526049x_{830} - 0.031883x_{849} - 28.725555x_{850} - 10.792065x_{851} \\ &\quad -0.19004x_{852} - 2.757176x_{853} - 12.290832x_{854} + 717.562256x_{855} \\ &\quad -0.057865x_{856} - 3.785417x_{857} - 78.30661x_{858} - 122.163055x_{859} \\ &\quad -6.46609x_{860} - 0.48371x_{861} - 0.615264x_{862} - 1.353783x_{863} \\ &\quad -84.644257x_{864} - 122.459045x_{865} - 43.15593x_{866} - 1.712592x_{870} \\ &\quad -0.401597x_{871} + x_{880} - 0.946049x_{898} - 0.946049x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

Constraint 372

$$\begin{split} a^Tx &\equiv -15.79081x_{826} - 8.598819x_{827} - 1.88789x_{828} - 1.362417x_{829} \\ &\quad -1.526049x_{830} - 0.031883x_{849} - 28.725555x_{850} - 10.792065x_{851} \\ &\quad -0.19004x_{852} - 2.757176x_{853} - 12.290832x_{854} + 717.562256x_{855} \\ &\quad -0.057865x_{856} - 3.785417x_{857} - 78.30661x_{858} - 122.163055x_{859} \\ &\quad -6.46609x_{860} - 0.48371x_{861} - 0.615264x_{862} - 1.353783x_{863} \\ &\quad -84.644257x_{864} - 122.459045x_{865} - 43.15593x_{866} - 1.712592x_{870} \\ &\quad -0.401597x_{871} + x_{880} - 0.946049x_{898} - 0.946049x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Optimal "classical" solution

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

Can the coefficients be known with such a high accuracy?

Constraint 372

$$\begin{split} a^Tx &\equiv -15.79081x_{826} - 8.598819x_{827} - 1.88789x_{828} - 1.362417x_{829} \\ &\quad -1.526049x_{830} - 0.031883x_{849} - 28.725555x_{850} - 10.792065x_{851} \\ &\quad -0.19004x_{852} - 2.757176x_{853} - 12.290832x_{854} + 717.562256x_{855} \\ &\quad -0.057865x_{856} - 3.785417x_{857} - 78.30661x_{858} - 122.163055x_{859} \\ &\quad -6.46609x_{860} - 0.48371x_{861} - 0.615264x_{862} - 1.353783x_{863} \\ &\quad -84.644257x_{864} - 122.459045x_{865} - 43.15593x_{866} - 1.712592x_{870} \\ &\quad -0.401597x_{871} + x_{880} - 0.946049x_{898} - 0.946049x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- ► Assume 0.1%-accurate approximation

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- Worst violation: 450%

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- Worst violation: 450%
- Random perturbation: $(1 + \xi_j)a_j$

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Optimal "classical" solution

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- ▶ Worst violation: 450%
- ▶ Random perturbation: $(1 + \xi_j)a_j$
- Relative violation:

$$V = \frac{b - \tilde{a}^T x^*}{b} \times 100\%$$

C. Büsing

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- ▶ Worst violation: 450%
- ▶ Random perturbation: $(1 + \xi_j)a_j$
- Relative violation:

$$V = \frac{b - \tilde{a}^T x^*}{b} \times 100\%$$

•
$$\mathsf{Prob}\{V > 0\} = 0.5$$

- $Prob\{V > 150\%\} = 0.18$
- Mean(V) = 125%

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Optimal "classical" solution

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- ▶ Worst violation: 450%
- ▶ Random perturbation: $(1 + \xi_j)a_j$
- Relative violation:

$$V = \frac{b - \tilde{a}^T x^*}{b} \times 100\%$$

•
$$Prob\{V > 0\} = 0.5$$

- ▶ $\mathsf{Prob}\{V > 150\%\} = 0.18$
- Mean(V) = 125%

Robust optimization: robust solutions remain (almost) always feasible

C. Büsing

Constraint 372

$$\begin{split} a^T x &\equiv -15.79081 x_{826} - 8.598819 x_{827} - 1.88789 x_{828} - 1.362417 x_{829} \\ &\quad -1.526049 x_{830} - 0.031883 x_{849} - 28.725555 x_{850} - 10.792065 x_{851} \\ &\quad -0.19004 x_{852} - 2.757176 x_{853} - 12.290832 x_{854} + 717.562256 x_{855} \\ &\quad -0.057865 x_{856} - 3.785417 x_{857} - 78.30661 x_{858} - 122.163055 x_{859} \\ &\quad -6.46609 x_{860} - 0.48371 x_{861} - 0.615264 x_{862} - 1.353783 x_{863} \\ &\quad -84.644257 x_{864} - 122.459045 x_{865} - 43.15593 x_{866} - 1.712592 x_{870} \\ &\quad -0.401597 x_{871} + x_{880} - 0.946049 x_{898} - 0.946049 x_{916} \\ &\geq b \equiv 23.387405 \end{split}$$

Optimal "classical" solution

$x_{826}^* = 255.6112787181108$	$x_{827}^* = 6240.488912232100$
$x_{828}^* = 3624.613324098961$	$x_{829}^* = 18.20205065283259$
$x_{849}^* = 174397.0389573037$	$x_{870}^* = 14250.00176680900$
$x_{871}^* = 25910.00731692178$	$x_{880}^* = 104958.3199274139$

- Can the coefficients be known with such a high accuracy?
- Assume 0.1%-accurate approximation
- Worst violation: 450%
- ▶ Random perturbation: $(1 + \xi_j)a_j$
- Relative violation:

$$V = \frac{b - \tilde{a}^T x^*}{b} \times 100\%$$

•
$$\mathsf{Prob}\{V > 0\} = 0.5$$

- $Prob\{V > 150\%\} = 0.18$
- Mean(V) = 125%

Robust optimization: robust solutions remain (almost) always feasible

Usually still very good objective value

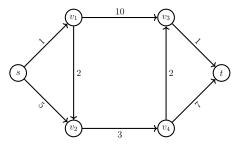
C. Büsing

$$\min_{\mathbf{x}\in\mathcal{X}} \left\{ \max_{\mathbf{c}\in\mathcal{U}} \sum_{i=1}^{n} c_i x_i \right\}$$

Given a set of feasible solution $\mathcal{X} \subseteq \{0,1\}^n$. Let \mathcal{U} be an interval uncertainty set defining different costs $\mathbf{c} \in [\underline{c}, \overline{c}]^n$. A *robust* optimial solution $\mathbf{x}^* \in \mathcal{X}$ is a feasible solution minimizing the worst case costs, i.e., solve

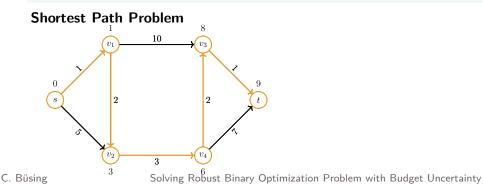
$$\min_{\mathbf{x}\in\mathcal{X}} \left\{ \max_{\mathbf{c}\in\mathcal{U}} \sum_{i=1}^{n} c_i x_i \right\}$$

Shortest Path Problem

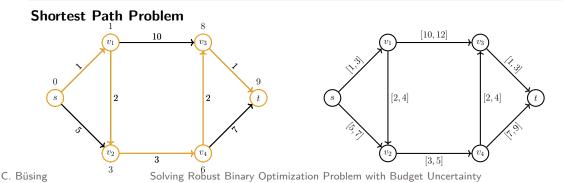


C. Büsing

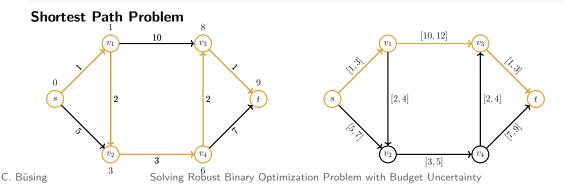
$$\min_{\mathbf{x}\in\mathcal{X}} \left\{ \max_{\mathbf{c}\in\mathcal{U}} \sum_{i=1}^{n} c_{i} x_{i} \right\}$$



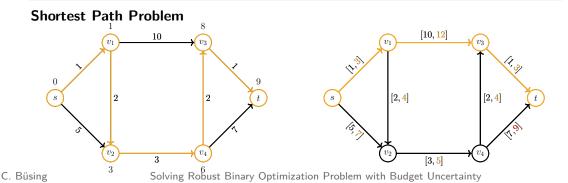
$$\min_{\mathbf{x}\in\mathcal{X}}\left\{\max_{\mathbf{c}\in\mathcal{U}}\sum_{i=1}^{n}c_{i}x_{i}\right\}$$



$$\min_{\mathbf{x}\in\mathcal{X}} \left\{ \max_{\mathbf{c}\in\mathcal{U}} \sum_{i=1}^{n} c_i x_i \right\}$$



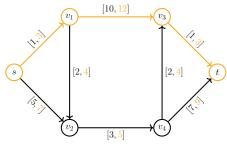
$$\min_{\mathbf{x}\in\mathcal{X}} \left\{ \max_{\mathbf{c}\in\mathcal{U}} \sum_{i=1}^{n} c_i x_i \right\}$$



Given a set of feasible solution $\mathcal{X} \subseteq \{0,1\}^n$, costs $c: N \to \mathbb{R}$ and deviations $\hat{c}: N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. An optimal solution solves

$$\min_{x \in \mathcal{X}} \left\{ \max_{S \subseteq N, |S| \le \Gamma} \sum_{i \in S} \hat{c}_i x_i + \sum_{i=1}^n c_i x_i \right\}$$

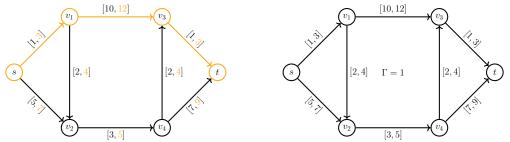
Shortest Path Problem



Given a set of feasible solution $\mathcal{X} \subseteq \{0,1\}^n$, costs $c: N \to \mathbb{R}$ and deviations $\hat{c}: N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. An optimal solution solves

$$\min_{x \in \mathcal{X}} \left\{ \max_{S \subseteq N, |S| \le \Gamma} \sum_{i \in S} \hat{c}_i x_i + \sum_{i=1}^n c_i x_i \right\}$$

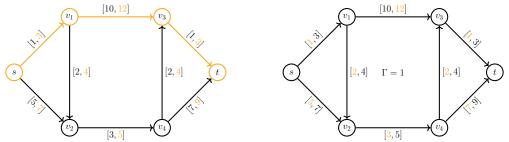
Shortest Path Problem



Given a set of feasible solution $\mathcal{X} \subseteq \{0,1\}^n$, costs $c: N \to \mathbb{R}$ and deviations $\hat{c}: N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. An optimal solution solves

$$\min_{x \in \mathcal{X}} \left\{ \max_{S \subseteq N, |S| \le \Gamma} \sum_{i \in S} \hat{c}_i x_i + \sum_{i=1}^n c_i x_i \right\}$$

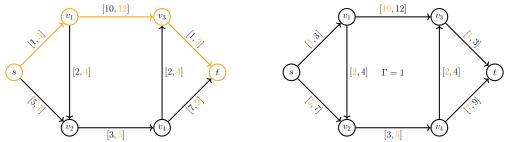
Shortest Path Problem



Given a set of feasible solution $\mathcal{X} \subseteq \{0,1\}^n$, costs $c: N \to \mathbb{R}$ and deviations $\hat{c}: N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. An optimal solution solves

$$\min_{x \in \mathcal{X}} \left\{ \max_{S \subseteq N, |S| \le \Gamma} \sum_{i \in S} \hat{c}_i x_i + \sum_{i=1}^n c_i x_i \right\}$$

Shortest Path Problem



Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \ge b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \ge b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$y \in \{0, 1\}^n$$

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \ge b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\begin{array}{c|c|c|c|c|c|c|} \min & \max_{S \subseteq N, |S| \le \Gamma} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i & \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \ge b & \\ & x \in \{0,1\}^n & & \text{s.t.} & Ax \ge b \\ & & x \in \{0,1\}^n & & z + p_i \ge \hat{c}_i x_i & \forall i \in N \\ & & p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0,1\}^n \end{array}$$

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$y \in \{0, 1\}^n$$

Totally unimodular

C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \ge b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\begin{array}{c|c|c|c|c|c|c|} \min & \max_{S \subseteq N, |S| \le \Gamma} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i & \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \ge b & \\ & x \in \{0,1\}^n & & \text{s.t.} & Ax \ge b \\ & & x \in \{0,1\}^n & & z + p_i \ge \hat{c}_i x_i & \forall i \in N \\ & & p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0,1\}^n \end{array}$$

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$0 \le y_i \le 1$$

Totally unimodular

C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \ge b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Proof: max

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$0 \le y_i \le 1$$

Totally unimodular

C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \ge b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Proof: max

C. Büsing

$$\sum_{i \in N} \hat{c}_i x_i y_i$$
$$\sum_{i \in N} y_i \le \Gamma$$
$$0 \le y_i \le 1$$

- Totally unimodular
- Dualize

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \ge b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

Totally unimodular

Dualize

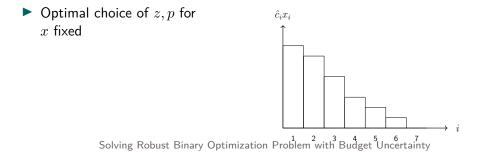
C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

$$\begin{aligned} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{i.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n_{\geq 0}, z \geq 0, x \in \{0,1\}^n \end{aligned}$$



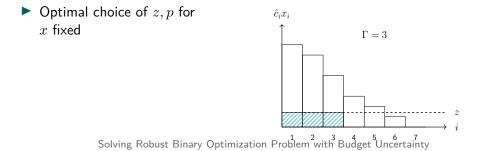
Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0, 1\}^n$$



C. Büsing

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0, 1\}^n$$

• Optimal choice of
$$z, p$$
 for
 x fixed

$$r = 3$$

$$p_i = (\hat{c}_i x_i - z)^+$$

C. Büsing

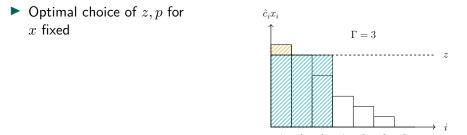
Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{\ge 0}, z \ge 0, x \in \{0, 1\}^n$$



C. Büsing

Theorem (Bertsimas & Sim 2004)

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

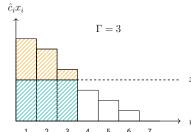
$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{>0}, z \ge 0, x \in \{0, 1\}^n$$

 z optimal between Γ and Γ + 1 largest value ĉ_ix_i



C. Büsing

Theorem (Bertsimas & Sim 2004)

Given a set of feasible solution $\mathcal{X} = \{x \in \{0,1\}^n \mid Ax \leq b\}$, costs $c : N \to \mathbb{R}$ and deviations $\hat{c} : N \to \mathbb{R}$ and a parameter $\Gamma \in \mathbb{N}$. Both problems are equivalent

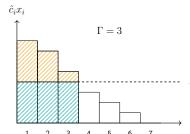
$$\min \max_{\substack{S \subseteq N, |S| \le \Gamma}} \sum_{i \in S} \hat{c}_i x_i + \sum_{i \in N} c_i x_i$$
s.t.
$$Ax \ge b$$

$$x \in \{0, 1\}^n$$

min
$$\Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i$$

i.t.
$$Ax \ge b$$
$$z + p_i \ge \hat{c}_i x_i \quad \forall i \in N$$
$$p \in \mathbb{R}^n_{>0}, z \ge 0, x \in \{0, 1\}^n$$

- z optimal between Γ and Γ + 1 largest value ĉ_ix_i
- We pay the Γ largest values ĉ_ix_i



C. Büsing

 compact formulation, no use of big M

- compact formulation, no use of big M
- let's solve some problems!

Practical Performance

7

	N		Cuts/								
	Node	Left	Objective	IInf	Best	Integer	Best	Bound	ItCnt	Gap	
	23720047	1519725	9 11719,	6862	20	11606,00	000	12288,1	353 55057	167	5,88%
	23770901	1522645	9 11828,	1686	23	11606,00	000	12287,7	700 55180	967	5,87%
	23821565	1525552	9 12011,	4041	24	11606,00	000	12287,4	030 55303	331	5,87%
	23871269	1528378	1 11783,	7154	22	11606,00	000	12287,0	473 55424	214	5,87%
	Elapsed t	ime = 34	34,41 sec.	597981	7,73 t	cicks, tree	e = 335	53,00 MB	, solution	ns = 1	2
compact formulation,	Nodefile	size = 1	305,88 MB 7	27,49	MB aft	er compres	sion				
ne was of him M	23922166	1531293	5 12191,	2914	28	11606,00	000	12286,6	809 55547	150	5,86%
no use of big M	23972875	1534204	3 12200,	0047	28	11606,00	000	12286,3	216 55668	913	5,86%
	24023053	1537054	3 11736,	4889	21	11606,00	000	12285,9	418 55790	174	5,86%
	24073375	1539901	9 12100,	5997	25	11606,00	000	12285,5	821 55912	195	5,86%
	24124016	1542793	3 12185,	6295	27	11606,00	000	12285,2	237 56034	120	5,85%
let's solve some	24174475	1545652	12076,	8979	25	11606,00	000	12284,8	592 56156	283	5,85%
	24223910	1548461	3 11936,	4399	23	11606,00	000	12284,4	984 56276	599	5,85%
problems!	24273972	1551295	3 11751,	6692	24	11606,00	000	12284,1	408 56398	552	5,84%
	24324148	1554133	3 11929,	2290	23	11606,00	000	12283,7	841 56521	083	5,84%
	24374451	1556976	3 12255,	0014	27	11606,00	000	12283,4	225 56644	319	5,84%
	Elapsed t	ime = 35	28,01 sec.	613252	8,45 t	cicks, tree	e = 340	08,61 MB	, solution	ns = 1	2
robust knapsack:	Nodefile	size = 1	360,88 MB 7	55,91	MB aft	er compres	sion				
	24424125	1559804	3 11993,	2112	23	11606,00	000	12283,0	698 56764	502	5,83%
	24475158	1562692	3 12240,	6841	27	11606,00	000	12282,7	013 56887	548	5,83%
	24526113	1565587	4 12232,	6254	27	11606,00	000	12282,3	386 57011	130	5,83%
	24576245	1568425	3 12236,	5555	30	11606,00	000	12281,9	808 57133	348	5,82%
	24625778	1571227	6 cu	toff		11606,00	000	12281,6	332 57253	146	5,82%
	24676376	1574097	7 11992,	7508	26	11606,00	000	12281,2	759 57374	978	5,82%
	24726652	1576930	5 12240,	2652	28	11606,00	000	12280,9	179 57496	901	5,82%
	24777038	1579770	4 11615,	6468	22	11606,00	000	12280,5	627 57618	121	5,81%
	24827584	1582634	2 12045,	1031	24	11606,00	000	12280,2	089 57740	201	5,81%
	24877740	1585478) си	toff		11606,00	000	12279,8	571 57860	645	5,81%
	Elapsed t	ime = 36	23,59 sec.	628511	9,25 t	cicks, tree	e = 346	34,00 MB	, solution	ns = 1	2
	Nodefile	size = 1	416,87 MB 7	84,63	MB aft	er compres	sion				
Büsing Solving	Robust Bin	arv Ont	imization	Proh	lem v	vith Budø	ret Ur	ocertai	ntv		

Practical Performance

	1	lodes			Cuts/						
	Node	Left	Objective	IInf	Best	Integer	Best	Bound	ItCnt	Gap	
	23720047	1519725	9 11719,	6862	20	11606,00	00	12288,1	353 550574	67	5,88%
	23770901	1522645	9 11828,	1686	23	11606,00	00	12287,7	700 551809	967	5,87%
	23821565	5 1525552	9 12011,	4041	24	11606,00	00	12287,4	030 553033	331	5,87%
	23871269	1528378	1 11783,	7154	22	11606,00	00	12287,0	473 554242	214	5,87%
	Elapsed t	ime = 34	34,41 sec.	597981	7,73 t	icks, tree	= 335	53,00 MB	, solutior	ns = 1	2
compact formulation,	Nodefile	size = 1	305,88 MB 7	27,49	MB aft	er compres	sion				
ma waa af him M	23922166	5 1531293	6 12191,	2914	28	11606,00	00	12286,6	809 555474	150	5,86%
no use of big M	23972875	5 1534204	3 12200,	0047	28	11606,00	00	12286,3	216 556689	913	5,86%
	24023053	3 1537054	3 11736,	4889	21	11606,00	00	12285,9	418 557901	74	5,86%
	24073375	5 1539901	9 12100,	5997	25	11606,00	00	12285,5	821 559124	195	5,86%
	24124016	5 1542793	3 12185,	6295	27	11606,00	00	12285,2	237 560341	20	5,85%
let's solve some	24174475	5 1545652	0 12076,	8979	25	11606,00	00	12284,8	592 561562	283	5,85%
	24223910	1548461	3 11936,	4399	23	11606,00	00	12284,4	984 562765	599	5,85%
problems!	24273972	2 1551295	8 11751,	6692	24	11606,00	00	12284,1	408 563985	552	5,84%
	24324148	3 1554133	3 11929,	2290	23	11606,00	00	12283,7	841 565210	83	5,84%
	24374451	1556976	8 12255,	0014	27	11606,00	00	12283,4	225 566443	819	5,84%
	Elapsed t	ime = 35	28,01 sec.	613252	8,45 t	icks, tree	= 340	08,61 MB	, solutior	ns = 1	2
robust knapsack:	Nodefile	size = 1	360,88 MB 7	55,91	MB aft	er compres	sion				
	24424125	5 1559804	3 11993,	2112	23	11606,00	00	12283,0	698 567646	502	5,83%
	24475158	3 1562692	8 12240,	6841	27	11606,00	00	12282,7	013 568875	548	5,83%
	24526113	1565587	4 12232,	6254	27	11606,00	00	12282,3	386 570111	.30	5,83%
	24576245	1568425	3 12236,	5555	30	11606,00	00	12281,9	808 571333	348	5,82%
	24625778	3 1571227	6 си	toff		11606,00	00	12281,6	332 572531	46	5,82%
	24676376	5 1574097	7 11992,	7508	26	11606,00	00	12281,2	759 573749	978	5,82%
	24726652	2 1576930	5 12240,	2652	28	11606,00	00	12280,9	179 574969	901	5,82%
	24777038	3 1579770	4 11615,	6468	22	11606,00	00	12280,5	627 576184	21	5,81%
	24827584	1582634	2 12045,	1031	24	11606,00	00	12280,2	089 577402	201	5,81%
	24877740	1585478	0 cu	toff		11606,00	00	12279,8	571 578606	645	5,81%
	Elapsed t	;ime = 36	23,59 sec.	628511	9,25 t	icks, tree	= 346	54,00 MB	, solutior	us = 1	2
	Nodefile	size = 1	416,87 MB 7	84,63	MB aft	er compres	sion				
2. Büsing Solving R	lobust Bir	ary Ont	imization	Prob	lem v	vith Rudø	et Ur	ocertair	ntv		

Practical Performance

7

23770901 15226459 11828,1686 23 11606,0000 12287,7700 55180967 5 23821565 15255529 12011,4041 24 11606,0000 12287,4030 55303331 5	,88% ,87% ,87% ,87%
23770901 15226459 11828,1686 23 11606,0000 12287,7700 55180967 5 23821565 15255529 12011,4041 24 11606,0000 12287,4030 55303331 5 23871269 15283781 11783,7154 22 11606,0000 12287,0473 55424214 5	87% 87%
23821565 15255529 12011,4041 24 11606,0000 12287,4030 55303331 5 23871269 15283781 11783,7154 22 11606,0000 12287,0473 55424214 5	87%
23871269 15283781 11783,7154 22 11606,0000 12287,0473 55424214 5	
Flaverd time = 2424 41 5070017 72 ticks time = 2252 00 ND utics = 10	87%
<pre>compact formulation, Elapsed time = 3434,41 sec. 5979817,73 ticks, tree = 3353,00 MB, solutions = 12 Nodefile size = 1305,88 MB 727,49 MB after compression</pre>	
23922166 15312936 12191,2914 28 11606,0000 12286,6809 55547450 5	86%
no use of big M 23922166 15312936 12200,0047 28 11606,0000 12266,3216 55668913 5	86%
24023053 15370543 11736,4889 21 11606,0000 12285,9418 55790174 5	86%
24073375 15399019 12100,5997 25 11606,0000 12285,5821 55912495 5	86%
	85%
let's solve some 24174475 15456520 12076,8979 25 11606,0000 12284,8592 56156283 5	85%
24223910 15484613 11936,4399 23 11606,0000 12284,4984 56276599 5	,85%
	,84%
· 24324148 15541333 11929,2290 23 11606,0000 12283,7841 56521083 5	,84%
	,84%
Elapsed time = $3528,01$ sec. $6132528,45$ ticks, tree = $3408,61$ MB, solutions = 12	
robust knapsack: Nodefile size = 1360,88 MB 755,91 MB after compression 24404105 IESE9408, 11903 2011 DE 15169400 I 12083 0508 ESTEASO2 5	
• 24424123 13330043 11333,2112 23 11000,0000 12203,0030 30104002 3	,83%
	,83%
	,83%
	,82%
	82%
	,82%
	,82%
	,81% ,81%
	81%
240///40 15554/60 Cttori 11005,0000 12/19,05/15/00004 5 Elapsed time = 3623,59 sec. 6285119,25 ticks, tree = 3464,00 MB, solutions = 12	01/
Nodefile size = 1416,87 MB 784,63 MB after compression	

C. Büsing

$$\begin{array}{ll} \min & \quad \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & \quad A x \geq b \\ & \quad z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & \quad p \in \mathbb{R}^n_{\geq 0}, z \geq 0, x \in \{0,1\}^n \end{array}$$

C. Büsing

Strong Formulations

 Atamtürk: four strong versions

 $\begin{array}{ll} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n_{\geq 0}, z \geq 0, x \in \{0,1\}^n \end{array}$

$$\begin{array}{ll} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n_{\geq 0}, z \geq 0, x \in \{0,1\}^n \end{array}$$

Strong Formulations

 Atamtürk: four strong versions

Discretize z

- Bertsimas & Sim:
 n + 1-subproblems
- Hansknecht et. al: Divide and Conquer

Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i
- Remedy: multiply z with x_i to strengthen the constraint:

$$\begin{array}{ll} \min & & \displaystyle \sum_{i \in N} c_i x_i + \Gamma z + \sum_{i \in N} p_i \\ \text{s.t.} & & \displaystyle Ax \geq b \\ & & \displaystyle p_i + x_i z \geq \hat{c}_i x_i \\ & & \displaystyle x \in \{0,1\}^n, p \in \mathbb{R}^n_{\geq 0}, z \geq 0 \end{array} \quad \forall i \in N \\ \end{array}$$

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i
- Remedy: multiply z with x_i to strengthen the constraint:

$$\begin{array}{ll} \min & \sum_{i \in N} c_i x_i + \Gamma z + \sum_{i \in N} p_i \\ \text{s.t.} & Ax \ge b \\ & p_i + x_i z \ge \hat{c}_i x_i & \forall i \in N \\ & x \in \{0,1\}^n, p \in \mathbb{R}^n_{\ge 0}, z \ge 0 \\ \end{array}$$
Bilinear constraint is equivalent to
$$\begin{cases} p_i \ge 0 \text{ for } x_i = 0 \\ p_i + z \ge \hat{c}_i x_i \text{ for } x_i = 1 \end{cases}$$

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i
- Remedy: multiply z with x_i to strengthen the constraint:

$$\begin{array}{ll} \min & \sum_{i \in N} c_i x_i + \Gamma z + \sum_{i \in N} p_i \\ \text{s.t.} & Ax \ge b \\ & p_i + x_i z \ge \hat{c}_i x_i & \forall i \in N \\ & x \in \{0,1\}^n, p \in \mathbb{R}^n_{\ge 0}, z \ge 0 \\ \end{array}$$
Bilinear constraint is equivalent to
$$\begin{cases} p_i \ge 0 \text{ for } x_i = 0 \\ p_i + z \ge \hat{c}_i x_i \text{ for } x_i = 1 \end{cases}$$

Theorem

The above bilinear formulation is stronger than any polyhedral formulation.

C. Büsing

- Atamtürk Formulations: If the nominal formulation is α-tight then the strongest formulation is also α-tight for the robust problem [At2006]
- ▶ Relatively small z are sufficient to fulfill $p_i + z \ge \hat{c}_i x_i$ for fractional x_i
- Remedy: multiply z with x_i to strengthen the constraint:

$$\begin{array}{ll} \min & \sum_{i \in N} c_i x_i + \Gamma z + \sum_{i \in N} p_i \\ \text{s.t.} & Ax \ge b \\ & p_i + x_i z \ge \hat{c}_i x_i & \forall i \in N \\ & x \in \{0,1\}^n, p \in \mathbb{R}^n_{\ge 0}, z \ge 0 \\ \end{array}$$
Bilinear constraint is equivalent to
$$\begin{cases} p_i \ge 0 \text{ for } x_i = 0 \\ p_i + z \ge \hat{c}_i x_i \text{ for } x_i = 1 \end{cases}$$

Theorem

The above bilinear formulation is stronger than any polyhedral formulation.

The bilinear formulation is impractical but the starting point for two new approaches
 C. Büsing
 Solving Robust Binary Optimization Problem with Budget Uncertainty

For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$

$$\begin{array}{ll} \min & \Gamma z + \sum_{i \in N} p_i + \sum_{i \in N} c_i x_i \\ \text{s.t.} & Ax \geq b \\ & z + p_i \geq \hat{c}_i x_i \quad \forall i \in N \\ & p \in \mathbb{R}^n_{\geq 0}, z = z', x \in \{0,1\}^n \end{array}$$

C. Büsing

- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- ► Fixing *z* yields a nominal problem

min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

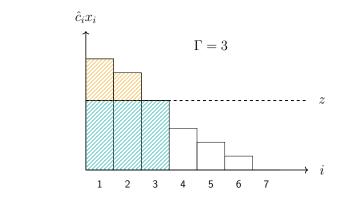
s.t. $Ax \ge b$

 $x \in \{0,1\}^n$

C. Büsing

- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem

The Γ largest value ĉ_ix_i is an optimal choice for z



min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

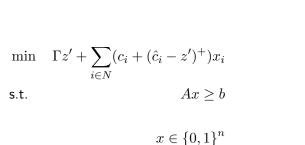
s.t. $Ax \ge b$

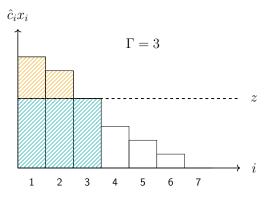
 $x \in \{0,1\}^n$

C. Büsing

- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem

- The Γ largest value ĉ_ix_i is an optimal choice for z
- ▶ $\mathcal{Z} = \{0, \hat{c}_1, \dots, \hat{c}_n\}$ contains an optimal choice for z





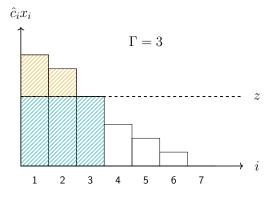
- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing z yields a nominal problem
- ► Fix z ∈ Z and solve |Z| nominal problems [BS2003]

min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

s.t. $Ax \ge b$

 $x \in \{0, 1\}^n$

- The Γ largest value ĉ_ix_i is an optimal choice for z
- ▶ $\mathcal{Z} = \{0, \hat{c}_1, \dots, \hat{c}_n\}$ contains an optimal choice for z



C. Büsing

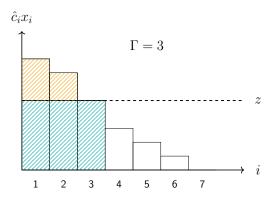
- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing *z* yields a nominal problem
- ► Fix z ∈ Z and solve |Z| nominal problems [BS2003]
- $|\mathcal{Z}|$ reducible to $\lceil \frac{n-\Gamma}{2} \rceil + 1$ [LK2014]

min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

s.t. $Ax \ge b$

 $x \in \{0,1\}^n$

- The Γ largest value ĉ_ix_i is an optimal choice for z
- ▶ $\mathcal{Z} = \{0, \hat{c}_1, \dots, \hat{c}_n\}$ contains an optimal choice for z



C. Büsing

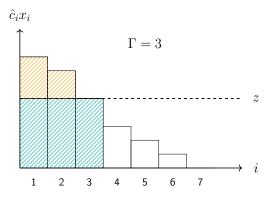
- For fixed z = z' it holds $p_i = (\hat{c}_i x_i - z')^+ = (\hat{c}_i - z')^+ x_i$
- Fixing *z* yields a nominal problem
- ► Fix z ∈ Z and solve |Z| nominal problems [BS2003]
- $|\mathcal{Z}|$ reducible to $\lceil \frac{n-\Gamma}{2} \rceil + 1$ [LK2014]
- Prune z on the fly using relations between objective values [HRS2018]

min
$$\Gamma z' + \sum_{i \in N} (c_i + (\hat{c}_i - z')^+) x_i$$

s.t. $Ax \ge b$

 $x \in \{0,1\}^n$

- The Γ largest value ĉ_ix_i is an optimal choice for z
- $\mathcal{Z} = \{0, \hat{c}_1, \dots, \hat{c}_n\}$ contains an optimal choice for z



C. Büsing

• an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists

- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- fixing z yields nominal problem

- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]

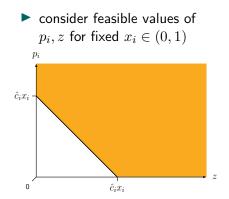
- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- Fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]
- \blacktriangleright n+1 may be too large for brute enumeration

- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- Fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]
- ▶ n+1 may be too large for brute enumeration \Rightarrow bound z instead of fixing it

- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]
- ▶ n+1 may be too large for brute enumeration \Rightarrow bound z instead of fixing it

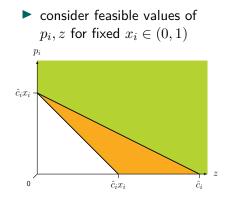
```
• consider feasible values of p_i, z for fixed x_i \in (0, 1)
```


- ▶ an optimal $z \in \{0, \hat{c}_1, \dots, \hat{c}_n\}$ exists
- fixing z yields nominal problem \Rightarrow solve n + 1 nominal problems [BS2003]
- ▶ n+1 may be too large for brute enumeration \Rightarrow bound z instead of fixing it



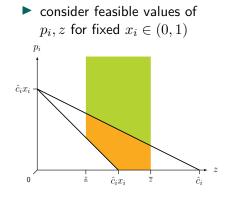
• original constraint $p_i \geq \hat{c}_i x_i - z$

an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



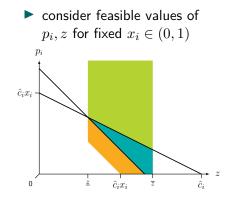
- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \ge \hat{c}_i x_i x_i z$

an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \geq \hat{c}_i x_i x_i z$
- assume we are given bounds $\underline{z} \leq z \leq \overline{z}$

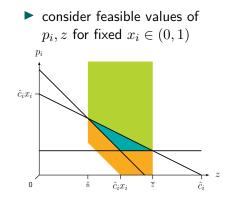
an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \ge \hat{c}_i x_i x_i z$
- assume we are given bounds $\underline{z} \leq z \leq \overline{z}$
- we linearize the bilinear constraint to

$$p_i \ge (\hat{c}_i - \underline{z})x_i + \underline{z} - z \tag{1}$$

an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



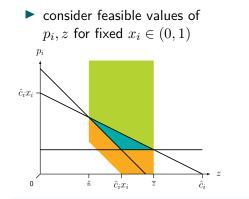
- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \geq \hat{c}_i x_i x_i z$
- assume we are given bounds $\underline{z} \leq z \leq \overline{z}$
- we linearize the bilinear constraint to

$$p_i \ge (\hat{c}_i - \underline{z})x_i + \underline{z} - z \tag{1}$$

and

$$p_i \ge (\hat{c}_i - \overline{z})x_i \tag{2}$$

an optimal z ∈ {0, ĉ₁,..., ĉ_n} exists
fixing z yields nominal problem ⇒ solve n + 1 nominal problems [BS2003]
n + 1 may be too large for brute enumeration ⇒ bound z instead of fixing it



- original constraint $p_i \ge \hat{c}_i x_i z$
- bilinear constraint $p_i \ge \hat{c}_i x_i x_i z$
- assume we are given bounds $\underline{z} \leq z \leq \overline{z}$
- we linearize the bilinear constraint to

$$p_i \ge (\hat{c}_i - \underline{z})x_i + \underline{z} - z \tag{1}$$

and

$$p_i \ge (\hat{c}_i - \overline{z})x_i \tag{2}$$

Proposition

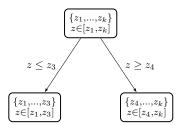
Inequalities (1) and (2) approximate the bilinear one and are equally strong if $z \in \{\underline{z}, \overline{z}\}$. C. Büsing Solving Robust Binary Optimization Problem with Budget Uncertainty

• let $\mathcal{Z} = \{z_1, \dots, z_k\}$ contain an optimal value for z

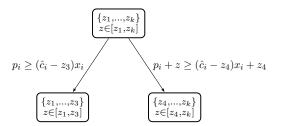
- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z

- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation

- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains

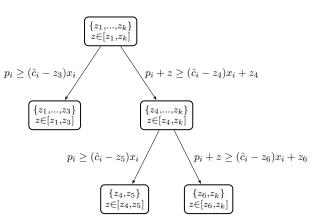


- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>



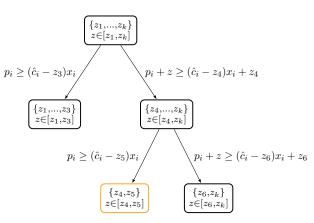
Branch & Bound

- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>

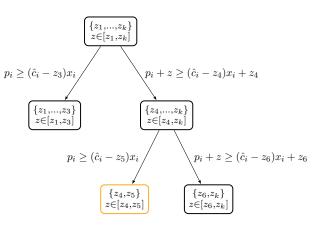


Branch & Bound

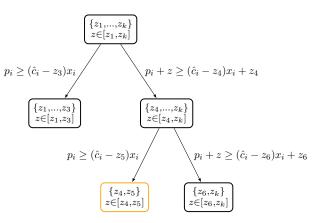
- ▶ let Z = {z₁,..., z_k} contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>
- solve integer subproblem once bilinear formulation is sufficiently approximated



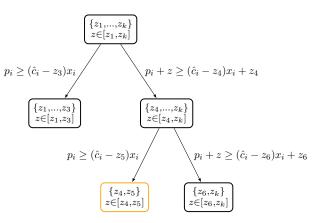
- let $\mathcal{Z} = \{z_1, \dots, z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>
- solve integer subproblem once bilinear formulation is sufficiently approximated
- advantages:
 - stronger LP-relaxations in subproblems



- let $\mathcal{Z} = \{z_1, \dots, z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>
- solve integer subproblem once bilinear formulation is sufficiently approximated
- advantages:
 - stronger LP-relaxations in subproblems
 - fast pruning of non-optimal z



- ▶ let $Z = \{z_1, ..., z_k\}$ contain an optimal value for z
- idea: branch on Z to find promising values for z
- solve LP-relaxation
- branch and restrict z to new domains
- ▶ apply stronger linearization using new bounds <u>z</u>, <u>z</u>
- solve integer subproblem once bilinear formulation is sufficiently approximated
- advantages:
 - stronger LP-relaxations in subproblems
 - fast pruning of non-optimal z
 - bounds on z yield many more structural properties



Implemented algorithm in Java with Gurobi for solving subproblems

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional methods

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional methods
 - Optimality-cuts, clique reformulations, bound estimation

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional methods
 - Optimality-cuts, clique reformulations, bound estimation
 - Pruning, terminating nominal subproblems, node selection, branching point etc...

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional methods
 - Optimality-cuts, clique reformulations, bound estimation
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017

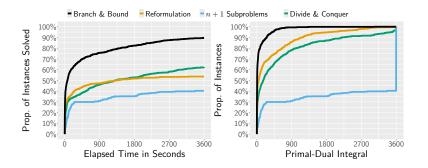
- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional methods
 - Optimality-cuts, clique reformulations, bound estimation
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017
- 67 suitable basic instances remained after filtering

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional methods
 - Optimality-cuts, clique reformulations, bound estimation
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017
- ▶ 67 suitable basic instances remained after filtering
- Several instances of different uncertainty levels per basic instance

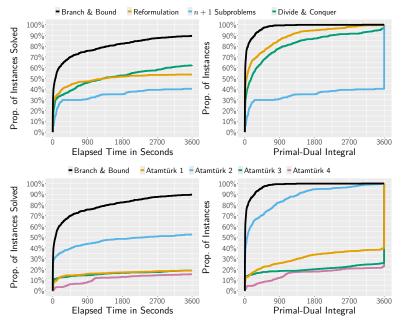
- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional methods
 - Optimality-cuts, clique reformulations, bound estimation
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017
- ▶ 67 suitable basic instances remained after filtering
- Several instances of different uncertainty levels per basic instance
- "State-of-the-art" algorithms for comparison

- Implemented algorithm in Java with Gurobi for solving subproblems
- Additional methods
 - Optimality-cuts, clique reformulations, bound estimation
 - Pruning, terminating nominal subproblems, node selection, branching point etc...
- Tested algorithm for robustified instances of MIPLIB 2017
- ▶ 67 suitable basic instances remained after filtering
- Several instances of different uncertainty levels per basic instance
- "State-of-the-art" algorithms for comparison
 - Bertsimas Sim standard reformulation, |Z| nominal subproblems, Divide & Conquer [HRS2018], Atamtürk's formulations,

Computational Results: B&B vs. Literature



Computational Results: B&B vs. Literature



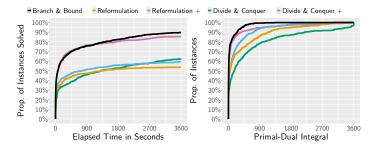
Solving Robust Binary Optimization Problem with Budget Uncertainty

Theoretical results improve competing algorithms substantially

- Theoretical results improve competing algorithms substantially
- E.g. cliques for ROB, optimality-cuts and improved dual bounds for DnC

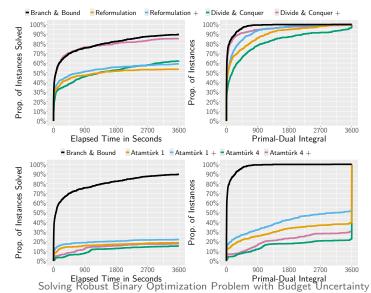
Improving Algorithms from Literature

- Theoretical results improve competing algorithms substantially
- E.g. cliques for ROB, optimality-cuts and improved dual bounds for DnC



Improving Algorithms from Literature

- Theoretical results improve competing algorithms substantially
- E.g. cliques for ROB, optimality-cuts and improved dual bounds for DnC



▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

• we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for \mathcal{C}^{NOM} and $\pi \geq 0$

Recycling Valid Inequalities

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for C^{NOM} and $\pi \geq 0$

Theorem

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Then the **recycled inequality**

$$\sum_{i \in N} \pi_i p_i + z \pi_0 \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

is valid for C^{ROB} .

Recycling Valid Inequalities

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for C^{NOM} and $\pi \geq 0$

Theorem

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Then the **recycled inequality**

$$\sum_{i \in N} \pi_i p_i + z \pi_0 \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

is valid for \mathcal{C}^{ROB} .

Proof: sum all bilinear constraints with coefficients π (valid due to $\pi \ge 0$)

$$\sum_{i \in N} \pi_i(p_i + x_i z) \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

Recycling Valid Inequalities

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for C^{NOM} and $\pi \geq 0$

Theorem

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Then the **recycled inequality**

$$\sum_{i \in N} \pi_i p_i + z \pi_0 \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

is valid for C^{ROB} .

Proof: sum all bilinear constraints with coefficients π (valid due to $\pi \ge 0$)

$$\sum_{i \in N} \pi_i (p_i + x_i z) \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$
$$\Leftrightarrow \sum_{i \in N} \pi_i p_i + z \sum_{i \in N} \pi_i x_i \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

▶ let C^{NOM} , C^{ROB} be the convex hulls of the nominal and robust problems

▶ we call an inequality $\sum_{i \in N} \pi_i x_i \leq \pi_0$ recyclable if it is valid for C^{NOM} and $\pi \geq 0$

Theorem

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Then the **recycled inequality**

$$\sum_{i \in N} \pi_i p_i + z \pi_0 \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

is valid for \mathcal{C}^{ROB} .

Proof: sum all bilinear constraints with coefficients π (valid due to $\pi \ge 0$)

$$\sum_{i \in N} \pi_i (p_i + x_i z) \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$
$$\Leftrightarrow \sum_{i \in N} \pi_i p_i + z \underbrace{\sum_{i \in N} \pi_i x_i}_{\le \pi_0} \ge \sum_{i \in N} \pi_i \hat{c}_i x_i$$

C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

 \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$

 \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$

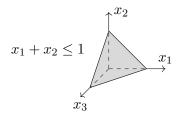
▶ for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- ▶ for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality.

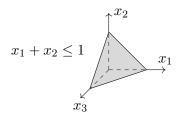
- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- ▶ for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let
$$\sum_{i\in N} \pi_i x_i \leq \pi_0$$
 be a recyclable inequality.



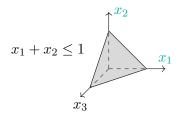
- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i\in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

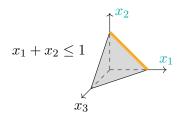
Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face.



C. Büsing

- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

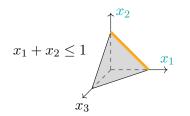
Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face.



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face. The corresponding recycled inequality is facet-defining for C^{ROB} if and only if

 $\dim\left(\operatorname{proj}_{S}\left(F\right)\right) = |S| - 1.$

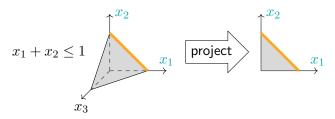


C. Büsing

- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face. The corresponding recycled inequality is facet-defining for C^{ROB} if and only if

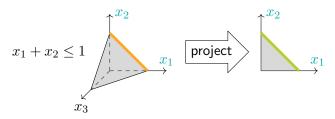
 $\dim\left(\operatorname{proj}_{S}\left(F\right)\right) = |S| - 1.$



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face. The corresponding recycled inequality is facet-defining for C^{ROB} if and only if

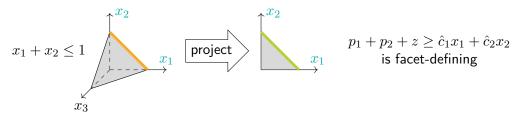
 $\dim\left(\operatorname{proj}_{S}\left(F\right)\right) = |S| - 1.$



- \blacktriangleright recycled inequalities are often facet-defining for $\mathcal{C}^{\rm ROB}$
- for simplicity: assume $\hat{c}_i > 0$ for all $i \in N$

Let $\sum_{i \in N} \pi_i x_i \leq \pi_0$ be a recyclable inequality. Let $S = \{i \in N | \pi_i > 0\}$ be its support and $F = \{x \in C^{\text{NOM}} | \sum_{i \in N} \pi_i x_i = \pi_0\}$ be its nominal face. The corresponding recycled inequality is facet-defining for C^{ROB} if and only if

 $\dim\left(\operatorname{proj}_{S}\left(F\right)\right) = |S| - 1.$



Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

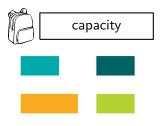
Dominated inequalities can also yield facet-defining recycled inequalities.

Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.

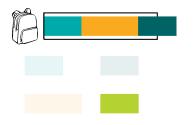


Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.



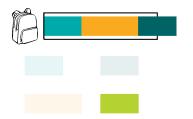
• let
$$\sum_{i \in C} x_i \le |C| - 1$$
 be a minimal cover inequality

Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.



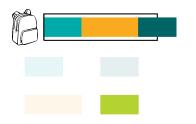
- let $\sum_{i \in C} x_i \le |C| 1$ be a minimal cover inequality
- ▶ in general not facet-defining for knapsack

Assume that \mathcal{C}^{NOM} is full-dimensional. If $\sum_{i \in N} \pi_i x_i \leq \pi_0$ is recyclable and facet-defining for \mathcal{C}^{NOM} , then its recycled inequality is facet-defining for \mathcal{C}^{ROB} .

corollary can be generalized to problems with lower dimension

Observation

Dominated inequalities can also yield facet-defining recycled inequalities.



- let $\sum_{i \in C} x_i \le |C| 1$ be a minimal cover inequality
- ▶ in general not facet-defining for knapsack

• but
$$\sum_{i \in C} p_i + (|C| - 1)z \ge \sum_{i \in C} \hat{c}_i x_i$$
 is always facet-defining for robust knapsack

▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$

	rob	ust standar	d formulat	ion	recycle constraints			
nodes	timeout	time	P-D int con	int con	timoout	time	P-D	int. gap
			integral	int. gap	timeout		integral	
50	0	1.73	0.04	19.53%	0	0.48	0.04	0.33%
100	9	2269.14	3.49	22.82%	0	4.50	0.16	0.32%
150	7	2223.68	2.56	23.66%	0	150.40	0.59	0.27%

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$
- $\blacktriangleright\,$ closing integrality gap by $\sim 99\%$ for 150 nodes

	robust standard formulation					recycle constraints			
nodoc	timeout	time	P-D	int con	+10	t	time	P-D	int con
nodes	timeout	time	integral	int. gap	LIII	timeout	time	integral	int. gap
50	0	1.73	0.04	19.53%		0	0.48	0.04	0.33%
100	9	2269.14	3.49	22.82%		0	4.50	0.16	0.32%
150	7	2223.68	2.56	23.66%		0	150.40	0.59	0.27%

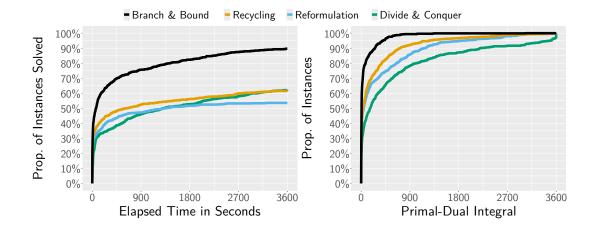
- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$
- $\blacktriangleright\,$ closing integrality gap by $\sim 99\%$ for 150 nodes
- $\blacktriangleright~\sim 504\text{-times}$ faster for 100 nodes and $\sim 15\text{-times}$ faster for 150 nodes

	rob	oust standar	d formulat	ion	recycle constraints			
nodes	timeout	time	P-D	int. gap	+:+	time	P-D	int. gap
			integral		timeout	time	integral	
50	0	1.73	0.04	19.53%	0	0.48	0.04	0.33%
100	9	2269.14	3.49	22.82%	0	4.50	0.16	0.32%
150	7	2223.68	2.56	23.66%	0	150.40	0.59	0.27%

- ▶ standard formulation + recycle constraints $\sum_{e \in \delta(v)} x_e \leq 1$ for all nodes v
- ▶ 10 random instances each for different numbers of nodes $n \in \{50, 100, 150\}$
- $\blacktriangleright\,$ closing integrality gap by $\sim 99\%$ for 150 nodes
- $\blacktriangleright~\sim 504\text{-times}$ faster for 100 nodes and $\sim 15\text{-times}$ faster for 150 nodes
- $\blacktriangleright \sim 22\text{-times smaller primal-dual integral for }100 \text{ nodes and } \sim 4\text{-times smaller for }150 \text{ nodes}$

	rob	ust standar	rd formulat	ion	recycle constraints				
nodes	timeout	time	P-D	int. gap	timeout	time	P-D	int. gap	
			integral				integral		
50	0	1.73	0.04	19.53%	0	0.48	0.04	0.33%	
100	9	2269.14	3.49	22.82%	0	4.50	0.16	0.32%	
150	7	2223.68	2.56	23.66%	0	150.40	0.59	0.27%	

Computational Study



C. Büsing

Solving Robust Binary Optimization Problem with Budget Uncertainty

20

Conclusion

Summary

- B&B for robust optimization based on strong bilinear formulation
- recycle inequalities
- conducted extensive computational study
- B&B has significantly better performance compared to literature
- insights useful for improving existing approaches

Conclusion

Summary

- B&B for robust optimization based on strong bilinear formulation
- recycle inequalities
- conducted extensive computational study
- B&B has significantly better performance compared to literature
- insights useful for improving existing approaches

Future Work

- evaluate for uncertain constraints
- generalizable to other robustness concepts(?)

Conclusion

Summary

- B&B for robust optimization based on strong bilinear formulation
- recycle inequalities
- conducted extensive computational study
- B&B has significantly better performance compared to literature
- insights useful for improving existing approaches

Future Work

- evaluate for uncertain constraints
- generalizable to other robustness concepts(?)

Thank you for your attention!

